

SAM-FS to DMF Exodus:
tales of data movement

Jason Ozolins

NCI National Facility

ANU Supercomputer Facility

these awful slides: bit.ly/UmUYJm

Word Association Football

●TERABYTESTERABYTES
●Bandwidth

●iops
●latency???

If you want to work effectively with all those terabytes, you need to keep
enough parallel work going to use bandwidth effectively, given latency and
IOPS of underlying system

●You can hug terabytes
●You can admire a mighty data pipe
●IOPs and latency not so easy to love

Backstory
• Needed to fully restore a ~3M inode SAM filesystem ASAP

• OK, samfsrestore, then stage -r to bring it all online...

• But the remote silo with the only archive copies had only a couple

of 9940B drives; seem to recall we could only use one??

• Small # drives worked fine for writing out archive copies, but...

• stage -r works in recursive filesystem traversal order, relies on

SAM to schedule stage requests

• SAM maximum file staging window for scheduling tape requests

is 50,000 files

• in worst case, could need as many as 60 passes over all the

tapes to get three million files online.

A hack seemed necessary

● Modified Sun-provided example sam_stat.c code to emit one line

per file with VSN, tarfile location, offset, in fixed format for sorting

● sfind /home -type f -print0 | gxargs -0 statcopy > /tmp/copies

● sort -k 1,2 /tmp/copies > /tmp/worklist

● (perl -ne '@F = split " ",$_,4; print "$F[3]\0";' /tmp/worklist |

gxargs -0 stage) > /tmp/log 2>&1

● brought 3M files back online in one evening

● perl is not verbatim, but was pretty much that level of complexity

● didn't care about filenames with embedded NL characters

● stage -r at end to handle any silly filenames

[jao900@dcmds0-acsls samfs-examples]$./statcopy1 ~/parse_dbload.pl
VSNp09 0x00000000000024a8.0009939c 5601
/home/900/jao900/parse_dbload.pl

mailto:'@F

Moving into the present...
• politics, tender timing meant entire StorageTek Silo dismantled
before new T950 library arrived
• so all SAM-FS files rearchived to disk VSNs
• all ~40M files supposed to be online as well (1.3PB)
• after dmcapture of SAM /massdata filesystem metadata and
restore onto DMF, just skip through dmscanfs.out and do dmgets
for everything
• hooray, high five!
• but...
• big 1.3PB online filesystem developed errors, couldn't samfsck
• 120TB conventional HSM cache replaced it
• so we found out how SAM 5.2 stages stuff from disk VSNs

• answer: with blithe optimism
• disk VSNs assumed not subject to physical limits like seek

times, rotational latency
• starts any # of concurrent copies from one disk VSN if requests

present
• reads in small chunks (1MB)
• no documented ways to change these behaviours in SAM 5.2

DMF differences from SAM-FS
caused a few surprises

● SAM-FS inode had timestamps for data residency
● age calculation uses residence timestamp
● can enforce LRU release policy pretty easily

● DMF sits on CXFS metadata + xattrs
● age calculation uses most recent of atime,mtime
● recall from SAM does not touch atime (rightly so)
● file with old atime just recalled from SAM is candidate for

dmfsfree as soon as it satisfies tape migration policy
● so you don't want to do redundant dmgets as you may

cause tape recalls

More hacks seemed necessary
● Saw a lot of bad staging happening

● 16 * 500MB stages from single 14TB 8+1 RAID 5 disk VSN
● horrible throughput (<50MB/sec for that VSN) from head

thrashing; guessing only 128kB read per disk per seek.
● poor HSM throughput affecting Vayu copy queue jobs

● Read the SAM source
● found undocumented way to restrict # of concurrent disk VSN

copies, so we could limit that
● couldn't recompile sam_stagerd_copy to change hardwired

disk VSN read/write sizes because build depends on closed,
unreleased source

● disassembled sam_stagerd_copy, found 1MB buffer size
constant offset in file (no deep significance; they just reused old
MO disk buffer size!), patched hex dump, turn it back to binary

● finally noticed that requests to same archive tar file (analogous:
DMF zone) always get handled by one sam_stagerd_copy
process.

A plan emerges

●enhanced old statcopy1 to display all copies and their media
types
●traverse entire massdata filesystem, build lists of files by disk VSN
●sort lists by tarfile location, offset to get work order lists by VSN
●parse dmdump of SAM FTP MSP daemon records to build big
Perl tied BDB hash, live_ftp_msp_bfids:

● original SAM path to files => BFID
● BFID => current path (handling renames)

●tmpfs is great for building such a DB if it can fit sensibly in mem.
●thanks SGI for providing 96GB on the DMF MDS nodes...
●significant space saving in this DB by storing each directory path
once and referring to it as prefix for filenames in that directory.

[jao900@dcmds0-acsls bin]$./statcopies ~/parse_dbload.pl
- 0100755 1 1471108 5601 /home/900/jao900/parse_dbload.pl
 0 dk VSNp09 0x00000000000024a8.0009939c
 1 dk VSNp20 0x00000000000070f9.01374506

How it fits together
●stage-dryrun preprocesses SAM VSN work lists against tmpfs
DB to quickly skip already migrated files
●stage-vsn-stream worker issues dmgets for files from one SAM
VSN work list:

● for each file, checks if still needs recall from SAM using DB
(because DB is updated more often than stage-dryrun is run)

● check (using another, static DB) that VSN tarfile for this file is
available on SAM server (some tarfiles never got written;
presumably during a SAM crash?); warn and skip if tarfile not
present

● add file to dmget list if satisfies other criteria (min/max size)
● once list full, issue dmget for that list (as file paths, see NOTE)

● fullness criteria are total data size in list, number files in list,
whether crossing over to a new tarfile on source VSN

● and so on...

Did it help??

●hacky backgrounded shell worker loop collects VSN workfile paths
from SysV message queue and starts stage-vsn-stream against
that workfile
●start one worker loop, observe throughput
●start another, observe...
●repeat while not yet scared of inviting DMF HA STONITH
●can suspend workers with job control :-)
●got to 600MB/sec throughput, but DMF got STONITHd
●DMF seemed OK with about 300-400MB/sec on our hardware
●SAM staging behaviour well controlled, no big slowdowns.
●small file throughput still too low (tens/second)
●re-used stage-dryrun to prepare lists of files to prestage and tar
up on SAM MDS; untar into staging area on DMF cache, fix atimes
and mv over the original offline files using the rename tracking in
the live_ftpsam_bfids DB. This soft deletes the corresponding
FTP MSP BFID daemon records without causing a recall.

A 'oncer' that was used twice

●The 800TB SAM /projects online filesystem died
during /massdata migration, and samfsck couldn't fix it.
●Large impact on users as this data was supposed
always to be online – the archive copies were for disaster
recovery rather than HSM as such.
●Same approach was used to bring it over to DMF in
order determined by triage of user projects.
●Total data moved with these scripts was probably on
order of 1.5PB.

Future directions

●mdss command enhanced with daemon
rec/chunk/path database to deliver similar function
as CSIRO have with their dmget wrapper. Aim is
to improve fairness w.r.t:

● # concurrent tape mounts for one mdss get
● latency on other accesses to VSNs satisfying
an mdss get.

Thanks for listening

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

