SAM-FS to DMF Exodus:

tales of data movement

Jason Ozolins
NCI National Facility
ANU Supercomputer Facility
these awful slides: bit.ly/UmUYJm

Word Association Football

TERABYTES

Bandwidth

*jOpS

*latency???

If you want to work effectively with all those terabytes, you need to keep
enough parallel work going to use bandwidth effectively, given latency and
IOPS of underlying system

*You can hug terabytes
*You can admire a mighty data pipe
*|OPs and latency not so easy to love

Backstory

- Needed to fully restore a ~3M inode SAM filesystem ASAP
- OK, samfsrestore, then stage -r to bring it all online...
- But the remote silo with the only archive copies had only a couple
of 9940B drives; seem to recall we could only use one??
- Small # drives worked fine for writing out archive copies, but...
- stage -r works in recursive filesystem traversal order, relies on
SAM to schedule stage requests
- SAM maximum file staging window for scheduling tape requests
Is 50,000 files
- In worst case, could need as many as 60 passes over all the

tapes to get three million files online.

A hack seemed necessary

[[a0900@dcmds0-acsls samfs-examples]$./statcopy1 ~/parse_dbload.pl
VSNp09 0x00000000000024a8.0009939c 5601
/home/900/jao900/parse_dbload.pl

* Modified Sun-provided example sam_stat.c code to emit one line
per file with VSN, tarfile location, offset, in fixed format for sorting
 sfind /home -type f -print0 | gxargs -0 statcopy > /tmp/copies
» sort -k 1,2 /tmp/copies > [tmp/worklist

* (perl -ne '@F = split" ",$_,4; print "$F[3]\0";' /tmp/worklist |
gxargs -0 stage) > /tmp/log 2>&1

* brought 3M files back online in one evening

e perl is not verbatim, but was pretty much that level of complexity
» didn't care about filenames with embedded NL characters

 stage -r at end to handle any silly filenames

mailto:'@F

Moving into the present...

- politics, tender timing meant entire StorageTek Silo dismantled
before new T950 library arrived
- 80 all SAM-FS files rearchived to disk VSNs
- all ~40M files supposed to be online as well (1.3PB)
- after dmcapture of SAM /massdata filesystem metadata and
restore onto DMF, just skip through dmscanfs.out and do dmgets
for everything
- hooray, high five!
- but...
- big 1.3PB online filesystem developed errors, couldn't samfsck
- 120TB conventional HSM cache replaced it
- 50 we found out how SAM 5.2 stages stuff from disk VSNs
answer: with blithe optimism
- dISk VSNs assumed not subject to physical limits like seek
times, rotational latency
- starts any # of concurrent copies from one disk VSN if requests
present
- reads in small chunks (1MB)
- no documented ways to change these behaviours in SAM 5.2

DMF differences from SAM-FS
caused a few surprises

« SAM-FS inode had timestamps for data residency

e age calculation uses residence timestamp
» can enforce LRU release policy pretty easily

e DMF sits on CXFS metadata + xattrs

» age calculation uses most recent of atime,mtime
 recall from SAM does not touch atime (rightly so)

* file with old atime just recalled from SAM is candidate for
dmfsfree as soon as it satisfies tape migration policy

e SO you don't want to do redundant dmgets as you may
cause tape recalls

More hacks seemed necessary

« Saw a lot of bad staging happening
« 16 * 500MB stages from single 14TB 8+1 RAID 5 disk VSN
* horrible throughput (<50MB/sec for that VSN) from head
thrashing; guessing only 128kB read per disk per seek.
e poor HSM throughput affecting Vayu copy queue jobs
* Read the SAM source
« found undocumented way to restrict # of concurrent disk VSN
copies, so we could limit that
e couldn't recompile sam_stagerd_copy to change hardwired
disk VSN read/write sizes because build depends on closed,
unreleased source
» disassembled sam_stagerd_copy, found 1MB buffer size
constant offset in file (no deep significance; they just reused old
MO disk buffer size!), patched hex dump, turn it back to binary
» finally noticed that requests to same archive tar file (analogous:
DMF zone) always get handled by one sam_stagerd copy
process.

A plan emerges

[[a0900@dcmds0-acsls bin]$./statcopies ~/parse_dbload.pl

- 0100755 1 1471108 5601 /home/900/jao900/parse_dbload.pl
0dk VSNp09 0x00000000000024a8.0009939c
1dk VSNp20 0x00000000000070f9.01374506

enhanced old statcopy1 to display all copies and their media
types
traverse entire massdata filesystem, build lists of files by disk VSN
sort lists by tarfile location, offset to get work order lists by VSN
eparse dmdump of SAM FTP MSP daemon records to build big
Perl tied BDB hash, live_ftp_msp_bfids:

e original SAM path to files => BFID

 BFID => current path (handling renames)
tmpfs is great for building such a DB if it can fit sensibly in mem.
thanks SGl for providing 96GB on the DMF MDS nodes...
esignificant space saving in this DB by storing each directory path
once and referring to it as prefix for flenames in that directory.

How it fits together

estage-dryrun preprocesses SAM VSN work lists against tmpfs
DB to quickly skip already migrated files
stage-vsn-stream worker issues dmgets for files from one SAM
VSN work list:
» for each file, checks if still needs recall from SAM using DB
(because DB is updated more often than stage-dryrun is run)
» check (using another, static DB) that VSN tarfile for this file is
available on SAM server (some tarfiles never got written;
presumably during a SAM crash?); warn and skip if tarfile not
present
 add file to dmget list if satisfies other criteria (min/max size)
 once list full, issue dmget for that list (as file paths, see NOTE)
» fullness criteria are total data size in list, number files in list,
whether crossing over to a new tarfile on source VSN

e and so on...

Did it help??

*hacky backgrounded shell worker loop collects VSN workfile paths
from SysV message queue and starts stage-vsn-stream against
that workfile

start one worker loop, observe throughput

start another, observe...

erepeat while not yet scared of inviting DMF HA STONITH

ecan suspend workers with job control :-)

egot to 600MB/sec throughput, but DMF got STONITHAd

DMF seemed OK with about 300-400MB/sec on our hardware
*SAM staging behaviour well controlled, no big slowdowns.

esmall file throughput still too low (tens/second)

re-used stage-dryrun to prepare lists of files to prestage and tar
up on SAM MDS; untar into staging area on DMF cache, fix atimes
and mv over the original offline files using the rename tracking in
the live_ftpsam_bfids DB. This soft deletes the corresponding
FTP MSP BFID daemon records without causing a recall.

A 'oncer' that was used twice

*The 800TB SAM /projects online filesystem died

during /massdata migration, and samfsck couldn't fix it.
e[arge impact on users as this data was supposed
always to be online — the archive copies were for disaster
recovery rather than HSM as such.

*Same approach was used to bring it over to DMF in
order determined by triage of user projects.

* Total data moved with these scripts was probably on
order of 1.5PB.

Future directions

‘mdss command enhanced with daemon
rec/chunk/path database to deliver similar function
as CSIRO have with their dmget wrapper. Aim is
to improve fairness w.r.t:

* ## concurrent tape mounts for one mdss get

* latency on other accesses to VSNs satisfying

an mdss get.

Thanks for listening

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

