SGI® InfiniteStorage The IS5600 Series Powered By NetApp

SGI IS5600 Lustre Scalable Units NetApp – SGI DMF User's Group Update

SGI[®] Company Proprietary – Includes NDA Material –

Agenda

- Overview of the IS5600
- How to architect a Lustre File System to meet customer requirements
 - Performance planning
 - Capacity planning

Basic Lustre Architecture

Lustre Components

- **Clients** either IP or IB connected compute clusters
- Management Server (**MGS**)
- Metadata Server (MDS)
- Metadata Target (**MDT**) provided by IS5500/IS5600 array(s)
- Object Storage Server (**OSS**)
- Object Storage Target (**OST**) provided by IS5500/IS5600 arrays
- Lustre Storage Unit (LSU)
 - An SGI term used to describe a scalable unit used to architect a Lustre File System with a specified Bandwidth and Capacity.

Lustre Metadata Target (MDT)

- MDT = IS5600 array(s) providing one or more LUNs
- Contains mapping of Lustre files to objects

Lustre Object Storage Target (OST)

- An OST is a LUN
- A LUN can be created on a standard RAID Volume Group or on a Dynamic Disk Pool
- A typical configuration would have 2 or more OSS servers connected to an IS5x00 array
- For this presentation we will discuss how to size the storage system that contains the OSTs that will be connected to the compute nodes (OSS)

SGI® InfiniteStorage IS5600 Lustre Storage Units (IS5600 LSU)

SGI[®] InfiniteStorage[™] 5600 -- Next Gen RAID Platform

- Simple: Easy to use, flexible and highly configurable architecture
 - Dynamic Disk Pools (DDP) that allow for easy addition of capacity to existing
 - Supports a combination of RAID-6 Volume Groups and Dynamic Disk Pools simultaneously
 - Interoperates in Existing SGI 12, 24 & 60 Bay Enclosures
- Seamless: A dynamically scalable storage well suited for DMF Auto-Tiering with CXFS
 - Create large pools of drives that can dynamically expand and contract to match the capacity needs of a given tier of storage
 - DDP offering "No Emergency Storage" so performance continues even during failures and no immediate need to swap out failed drives
 - Dramatically accelerated drive rebuild times as compared to RAID-6 for large capacity drives
- Streamlined: Price/Performance optimized
 - Highest data throughput per footprint / spindle / watt / \$ with leading mixed workload performance
 - Optimized all SSD arrays for pure IOPS or SSD + HDD Hybrid array options
 - Streamlined Support using AutoSupport "Phone Home" (ASUP)

IS5x00 Platform Options

Controllers

IS5000

Entry System Scale to 192 drives, 576TB

IS5500

Midrange Performance Scale to 384 drives, 1.2PB

IS5600

HPC Performance Scale to 384 drives, 1.2PB

Enclosures

12bay

Entry System 2U / 3.5" 12 drives NL-SAS, SSD

24bay

Performance System 2U / 2.5" 24 drives SAS, SSD

60bay Dense Performance 4U / 3.5" 60 drives NL-SAS, SAS, SSD

IS5600 Product Specifications

Feature	E5500 Storage Controller
Controller Processor	Intel Xeon E5-2418L ("Sandy Bridge") 2.0 GHz quad core
Controller Type	Duplex
Controller Flash	16GB for SANtricity OS & cache offload
System Memory	12 (6/24 GB Cache per controller – (3) (8 GB DIMMS Q3CY2014)
Host Interface (base)	None
Host Interface Cards	Quad port 6G SAS Quad port 16G FC (GA Q1CY2014) Quad port 12G SAS (GA Q3CY2014) Dual port 56G IB (GA Q3CY2014)
Drive Expansion	Dual 6G SAS
Drives	384 (48 2.5" SSD in (2) 24 bay Enclosures)
Power	125W (base), 150W (with HIC)
Enclosure Support	DE1600 (2u/12) DE5600 (2u/24) DE6600 (4u/60)
Performance	900,000 IOPs* 6,000 MB/sec**
	* RAID6, SAS HIC, 512byte block size max burst Random Read, 384 10k RPM drives ** RAID6, SAS HIC, 512K block size Sequential Write, 384 10k RPM drives, Cache Mirroring Enabled

IS5600 is a leader in Performance Efficiency

IS5600 provides 2.5 times MBps over nearest non-SGI based benchmark

http://www.storageperformance.org/results/benchmark_results_spc2#b00065

* SPC-2 Publications in 2011 or later; Total Price \$500K or less Comparing IS5600 to non-SGI technology

IS5600 Leads in Performance per \$

IS5600 doubles the performance per \$

SPC-2 - Price per MBps Performance*

http://www.storageperformance.org/results/benchmark_results_spc2#b00065

* SPC-2 Publications in 2011 or later; Total Price \$500K or less Comparing IS5600 to non-SGI technology

Lustre Bandwidth Scaling

- Scale bandwidth by adding systems (IS5660) •
- Scale capacity by adding drive enclosures (DMODULE60) •

* 4TB drive RAW capacity

**Direct IO, IOZone or IOR RAID-6 8+2 100% Sequential Writes CME, NL-SAS 7.2K RPM HDD

5 x IS5660 + 5 x DMODULE60

1 rack

Lustre Capacity Scaling - IS5600 2 x IS5660 8 x DMODULE60 1 Rack Scale capacity by adding drive enclosures (DMODULE60) • One IS5660 + multiple DMODULE60 each containing 60 drives • nuge Sgl **5000** Up to 2.4 PB per 40U rack • 1 x IS5660 + IS5660 Dual Controller 5 x DMODULE60 System 1 x IS5660 + naga 5gi 5000 Front 4 x DMODULE60 View 1 x IS5660 + 3 x DMODULE60 1 x IS5660 + Rear SQ1 5400 2 x DMODULE60 View 1 x IS5660 + 1 x DMODULE60 1 x IS5660 SQI 5600 ---- <u>52</u>] 5600 ar SEI 5600 2 x Controller (IS5660) or 2 x ESM NL-SAS Drives(n) 60 120 180 240 300 360 600 Capacity (TB)* 720 240 480 960 1200 1440 2400 Bandwidth 5 5 5 5 4 5 10 (GB/s, CME writes)

* 4TB drive RAW capacity

**Direct IO, IOZone or IOR RAID-6 8+2 100% Sequential Writes CME, NL-SAS 7.2K RPM HDD

Test 1: One IS5600 with 120 drives with two OSSs, demonstrate max write perf

SAS 6Gb/s connection

FDR Infiniband Network with OFED v1.5.x

Test 2: Two IS5600 with 120 drives with four OSSs, demonstrate max write perf

SAS 6Gb/s connection

FDR Infiniband Network with OFED v1.5.x

Notable HPC Sites with IS5x00

Where	Customer	Capacity	Systems
Australia	Pawsey Center – Square Kilometer Array	6PB	(27) IS5600
Northern California	NASA AMES Advanced Super Computing Division	4PB	(30) IS5500
Maryland, USA	NASA Goddard	13PB	(10) IS5500
Write Patterson AFB Ohio, USA	TI-11/12 – Wright Patterson AFB	6PB	(112) IS5500
Japan	CREIPE	3PB	(4) IS5500

Dynamic Disk Pools (DDP)

Delivering New Levels of Performance and Protection

Consistent Performance

Increased Data Protection

Dynamic Disk Pools Overview

- DDP dynamically distributes data, spare capacity, and parity information across a pool of drives
- Intelligent algorithm defines which drives should be used for data placement (seven patents pending)
- Data is dynamically recreated/redistributed as needed to maintain protection/distribution

Consistent Performance

Designed to maintain high-speed data delivery even during a drive failure and reconstruction

- Performance drop is minimized during rebuild*
- Rebuild completes up to 8x
 faster than traditional RAID*

 Result: Significantly more time spent in optimal mode for maximum productivity

*Results depend on pool size, drive type, and workload.

Data Protection

- Unmatched protection against drive failures
- Shorter rebuild times reduce exposure to multiple cascading disk failures
- DDP's dynamic rebuild process uses all the drives in a disk pool for the reconstruction of the failed drive
- Critical data within a DDP stripe is given reconstruction priority to protect against data loss should a multiple drive failure occur
- Provides significant improvement in data protection
- Larger pool provides even greater protection

Extreme Versatility

"Right-size" any environment

- Flexible disk pool sizing optimizes shelf utilization
- Multiple ways to implement pools

Single pool for all volumes maximizes simplicity, protection, and utilization

Smaller pools with one volume/pool maximize performance for bandwidth applications and clustered file systems

Extreme Versatility

Multiple ways to create storage tiers

- Create multiple pools to meet different requirements
- Such as: high-performance pool and high-capacity pool
- Intermix traditional RAID and DDP
- Perfect when smaller RAID 10 or SSD volumes are required for maximum performance

RAID 10 with SSD/15K for Max Performance Volumes

DDP for Capacity Volumes

DDP v RAID-6 Lustre Performance Model

Better Bandwidth Over Time

- Instantaneous bandwidth, RAID-6 is better by approximately 10%
- However factoring in failures that will occur over time, DDP delivers more total performance since you can rebuild a large drive faster in a Disk Pool than in a RAID Group
- Customers are demanding assurances that the storage can recover from failures in a reasonable amount of time

DDP Performance Model Demo

INPUT					
n Optimal Bandwidth	BW reduction due to HDD failure	Average yearly drive failure rate	Time in degraded mode after physical Drive Replacement (Days)		
50	30%	2.0%	4		
45	10%	2.0%	0		
	50	50 30%	n Optimal Bandwidth BW reduction due to HDD failure failure rate 50 30% 2.0%	Optimal BandwidthBW reduction due to HDD failureAverage yearly drive failure rateTime in degraded mode after physical Drive Replacement (Days)5030%2.0%4	Optimal BandwidthBW reduction due to HDD failureAverage yearly drive failure rateTime in degraded mode after physical Drive Replacement (Days)5030%2.0%4

Do not enter anything below this box

E	OUTPUT						
	Configuration	Total Aggregate Bandwidth Per Year With Expected Drive Failures (PB Per Year)	Total Percentage Increase Per Year in Aggregate Bandwidth Using DDP	Total # Drive Failures Per Year (count)	*Note:DDP is rehalancing	I of al time in	Degraded
	Raid 6 (8+2)	1,355	-0.82%	24	1	5.0	120
	DDP	1,344		24	1	1	24

Thank You.

Questions?

Thank you

