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Background 

• With Peter Edwards, Gareth Williams, Aaron 
McDonough, Maciej Golebiewski and several 
users 

• ASC Data Store – set up for data intensive 
computing 

•  Typically accepting and processing of data from climate 
models 

•  Preparing data from climate models for down-scaling runs 
• Large data sets, sometimes large numbers of 

files, large i/o requirements 
• Simple to complex workflows 
• May involve transfers to other systems 

•  e.g. NCI NF 
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Processing constraints 

•  Want best throughput 
•  analysis is a big bottleneck in much of this science 

•  Users write own scripts, or get them from group members 
•  Start without any regard to the underlying file system 

•  Not an issue with few files and small data 
•  often all on-line 

•  Problems come with large numbers of files, and/or large file 
sizes 

•  Education process then starts: probably more items in our 
HPCbull on using the DMF HSM than on any other single 
topic in the last 18 years! 

•  Presentation  
•  problems and some solutions to this kind of workflow  
•  like passing a magnifying glass over the data 
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Problem 1: throughput too low 

• With a typical workflow, the pattern is: 
Loop over target files !

Read input file!
process!
write output file!

End loop!

• On an HSM, this leads to low throughput  
•  (measure with average number of CPUs used:   

CPU time / elapsed time). 
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Problem 2: poor usage of tape drives 

• Each new file read leads to a tape mount 
•  Poor use of drives 
•  (1 minute mount and position, 1 sec to read a 100 Mbyte file, 

another minute to rewind, dismount, replace in library). 
• More wear on tapes and drives 
•  Reduced throughput for that user and everyone else 
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Solution 1: use dmget 

•  Issue dmget command to explicitly recall the files 
dmget files*!
Loop over target files!

Read input file; process; write output file!
End loop!

•  Allows DMF to efficiently recall multiple files from each tape 
•  Wrinkles 

•  Put the dmget command in the background, so that processing can 
start as files are recalled 

•  Insert another dmget command, so that processing aborts when a 
file can’t be recalled. 

dmget files* &!
Loop over target files!

dmget thisfile && read input file; process; write 
output file!

End loop!
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Problem 3: users using dmget hog the 
system 

• The DMF request queue is mostly FIFO 
• One user’s large request can block other 

users for hours 
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Solution 2: local dmget wrapper 

• First version broke requests up into lumps, 
based on the number of files and amount of 
data 

•  Efficiency within lumps 
•  Serialised the lumps, to allow other users’ requests to be 

serviced between lumps 
•  Lost some efficiency in tape usage 
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Problem 4: my files keep getting put away 
before I can use them 

• With a busy system, recalled files can get 
freed before being used 

• To preserve POSIX, a file recall does not count 
as an access 

• Need to update access time (since you are 
about to read the file anyway) 
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Solution 3: add a -a flag to dmget 

• Solution 3: add a -a flag to dmget 
•  (Used to advise using touch -a) 

•  now a flag on dmget 

• Updates access time 
• Means that recalled files are no longer the 

prime targets for the DMF freeing process 
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Solution 4: recall files in smaller batches 

dmget batch1* &!
Loop over batches!

If (not last batch) dmget batch_next* &!
Loop over files in this batch!
  dmget thisfile && read input file; process; 
write output file!

End loop!
End loop!



CSIRO  Advanced Scientific Computing 

Problem 5: The file system filled, or I hit my 
quota limit 

• We impose quota limits on on-line space in 
the /cs/datastore 

• In 6 Tbyte filesystem, have default quota of 
2 Tbyte, to stop one user dominating to the 
detriment of others 
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Solution 5: dmput recalled files after use 

• Add a dmput -r onto the recalled files 
• Release disc space for dual state files 

dmget batch1* &!
Loop over batches!

If (not last batch) dmget batch_next* &!
Loop over files in this batch!
  dmget thisfile && read input file; process; write 
output file; dmput -r thisfile!

End loop!
End loop!

•  Wrinkle 
•  Don’t want users generating dmput request for new files, since we 

want the system to batch these together. 
•  Use local dmput wrapper supporting the -Q flag 

•  only dual and partial state files are released. 
•  dmput -r -Q thisfile 
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Problem 6: The user whose files I am 
recalling hit a quota limit 

• Often the user doing the recalling does not 
own the files 

• Lots of recalls cause the owner to hit an 
on-line space quota limit 

• The SGI dmput does not allow users to 
dmput other people’s files 

• Had tried various ruses with .rhosts files to 
allow limited cross-user access 

• not satisfactory 
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Solution 6: local dmput wrapper allows 
cross-user dmputting 

• Allows dmput on another user’s files, 
provided the initiating user  

• has read access to the file 
• belongs to the group of the file. 
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Problem 7: original dmget wrapper does not 
allow recall efficiency 

• When users call the original dmget 
wrapper on their batches of files, and this 
breaks these batches into lumps, then a lot 
of the built-in DMF tape access 
optimisation is lost 
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Solution 7: New local dmget wrapper 

•  Restores the DMF tape recall efficiency, by making 
batches by tape volume 

•  From man dmget: 
•  (CSIRO only) CSIRO's wrapper around the SGI dmget program 

is intended to prevent one user who requires a large amount of 
data to be recalled from locking out a following user with more 
modest demands.  

•  It does this by determining which tapes the files reside on, and 
processes them in batches tape by tape.   

•  This minimises tape mounts and multiple passes over tapes, 
which is kinder to the system and would result in faster 
processing for the user.   

•  Batches by one user may be interleaved with batches from a 
different one. 

http://http://hpsc.csiro.au/users/dmfug/Meeting_Oct2009/
Presentations/dmget_wrapper/ 
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Problem 8: dmget wrapper lumps don’t 
match user batches 

• Losing efficiency again 
• User breaks work up into 
convenient batches, e.g. a year at 
a time 

• This does not coincide with 
optimum tape batches 
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Solution 8: New local dmget wrapper option 
--list 

•  dmget --list files* 
•  A different solution, if the order in which files are processed doesn't 

matter, is to use a feature of the wrapper where it will perform a 
dummy run, listing the files in the order in which it would have recalled 
them, but without actually doing so. (From man dmget) 
dmget --list file1 file2 file3 file4 > $TMPDIR/lof!
                dmget < $TMPDIR/lof &!
                for f in ` cat $TMPDIR/lof `; do!
                     process_one_file $f!
                     dmput -r $f!

                done!

•  Wrinkles 
•  Local dmget has options: 

•  --list, --defer, --recurse 
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Problem 9: processing still waits for files 

•  Can have imbalances, depending on the times to recall 
files compared with the time to process files 

•  Use parallel processing with background tasks, and 
control the number of background tasks depending on 
how much impact you want on other users, and the 
extent of the imbalance. 
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Solution 9: Use parallel  

•  Put the commands to be executed into a file: e.g. 
Loop over files (in dmget --list order)!

cat < EOF >> $TMPDIR/commands!
dmget -a thisfile && process thisfile ; dmput -r -Q 
thisfile!

EOF!
End loop!

• Execute the commands in batches in parallel 
parallel -j $max_bg < $TMPDIR/commands 

•  $max_bg should be determined by various factors 
•  number of requested CPUs in the batch job 
•  the typical size of the files 
•  the desired working set size (of on-line data) for the processing 
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Problem 10: recalls issued for files that don’t 
need to be processed 

• When reruns are done, or when 
transferring files, don’t want to re-issue 
recalls for files already processed. 

• For example, when copying files to a 
remote location, there are often failures, 
and the script is re-run, with wasted 
recalls. 
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Solution 10: Use rsync dry-run 

• rsync --archive --verbose --dry-run \ 
       [other options] files destination:   

(rsync –anv ...) 

and capture the list of files that would need to 
be transferred to do the real update. 
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Example: transferring files to NCI NF. Part 1 

# Set up: 
source_dir=~bel107/tests-cherax!
file_mask=job.progress.2011-01-1'*'!
dest_dir=test-transf!
dest_host=vayu.nci.org.au!
dest_user=rcb599!
transf_cmd='rsync --archive --rsh=ssh --partial \!
   --whole-file'!
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Example: transferring files to NCI NF. Part 2 

cd $source_dir!
max_bg=5 # Max. number of background processes. 
max_Mbyte=40000 # Max. amount of data to be recalling at any time. 
# Find a sample file size, and ensure that the amount of data being 
# recalled does not exceed $max_Mbyte, nor the number of files (and 
# hence processes) does not exceed the initial value of $max_bg. 
file_sizeM=$(ls -al $file_mask | tail -n 1 | \!
   awk '{print int($5/1000000)}')!
if [ $file_sizeM -le 0 ] ; then!
   file_sizeM=1!
fi!
((nfiles=$max_Mbyte/$file_sizeM))!
if [ $nfiles -lt $max_bg ] ; then!
   max_bg=$nfiles!
fi!
print \$max_bg is $max_bg!
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Example: transferring files to NCI NF. Part 3 

# Collect a list of only those files that need updating. 
$transf_cmd -n --out-format='%n' $file_mask \!
   ${dest_user}@${dest_host}:${dest_dir} > \!
   $TMPDIR/file.list.1!

# Set up the files in order by tape volume. 
dmget --list < $TMPDIR/file.list.1 > $TMPDIR/file.list.2!

# Initiate a dmget for the first batch. 
head -n $max_bg $TMPDIR/file.list.2 | $dmget_cmd -a &!

/bin/rm $TMPDIR/jobqueue!
touch $TMPDIR/jobqueue!
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Example: transferring files to NCI NF. Part 4 

# Set up commands in a file, in optimum DMF order. 
for ifil in $(cat $TMPDIR/file.list.2) ; do!
  print setup for $ifil!

    #  Ensure the required file is present before proceeding.   
    # Pin the dmget to the processing. 
/bin/echo " \!
  echo processing $ifil ; $dmget -a $ifil ; \!
   ($transf_cmd -v $ifil \!
   ${dest_user}@${dest_host}:${dest_dir} &&\!
    $dmput -r -Q $ifil ) 1> $TMPDIR/out.$ifil.1  2>&1  \!
" >> $TMPDIR/jobqueue!
done!
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Example: transferring files to NCI NF. Part 5 

# Add a dummy command to finish the pipe. 
echo "echo last command executed, but earlier ones may \!
be still running" >> $TMPDIR/jobqueue!

# Now set off the parallel execution. 
parallel -j $max_bg < $TMPDIR/jobqueue!
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Example: transferring files to NCI NF. Part 6 

# Loop to ensure all is done (may not be needed). 
  max_loops=10!
  i_loop=1!
  wait_time=10!
  while [ $i_loop -lt $max_loops ] ; do!
    njobs=$(ps --no-headers | tee $TMPDIR/ps.out | wc -l)!
    cat $TMPDIR/ps.out!
    if [ $njobs -gt 5 ] ; then!
      echo $njobs processes in total - sleep for \!
        $wait_time seconds!
      sleep $wait_time ; (( wait_time = $wait_time * 2 ))!
    else!
      break!
    fi!
    (( i_loop = $i_loop + 1 ))!
  done!
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Example: transferring files to NCI NF. Part 7 

wait!
# Collect the output files. 
cat $TMPDIR/out.*!
# Optional - files should be removed by system if run as batch job.  
# However, for repeated interactive execution, do the remove. 
/bin/rm $TMPDIR/out.*!
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Further notes and work 

•  The above relies on passwordless ssh being set up 
•  Uses hpn-ssh by default 
•  Does not use gridftp (anti-social?), but does do parallel 

recalls, parallel processing, parallel file transfers 
•  Key techniques are: 

•  to try to do the recalls in the best possible order 
•  to tie the processing/transfer to the individual recall, and 
•  to do as much as reasonable in parallel 

•  Could check quota usage 
•  have done in another version 

•  Could use this script to transfer files from migrating file 
system to scratch/work/flush area, and then work in there 

•  Could set up utility 
•  mcp like scp, but aware of source being on migrating file system 

•  Hard to make a general facility 
•  Big differences in techniques depending on the sizes and numbers of 

files, and the relative amount of processing involved. 
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Conclusion 

• HSM 
• key technology, but hard to build efficient 

workflows 
• Applies to ‘archive’ services as well 

• need intelligence in the recall process 
• User education!!! 
• dmgets are the key 
• locally-written version provides important 
enhancements 

• enhanced dmput as well 
• The process of putting data into an HSM is 
not so difficult! 



Thank you 

CSIRO IM&T 
Robert Bell 
Technical Services Manager, Advanced Scientific Computing 

Phone:  (03) 9545 2979 
Email:  Robert.Bell@csiro.au 

 hpchelp@csiro.au  
Web:  http://intranet.csiro.au/intranet/imt/eResearch/asc.htm  

 http://www.hpsc.csiro.au/contact  
ASC Helpdesk:  (03) 8601 3800 

Contact Us 
Phone: 1300 363 400 or +61 3 9545 2176 

Email: Enquiries@csiro.au  Web: www.csiro.au 


