
Strategies for data processing on a migrating
file system

Robert C. Bell
CSIRO IM&T ASC

CSIRO Advanced Scientific Computing

Background

• With Peter Edwards, Gareth Williams, Aaron
McDonough, Maciej Golebiewski and several
users

• ASC Data Store – set up for data intensive
computing

•  Typically accepting and processing of data from climate
models

•  Preparing data from climate models for down-scaling runs
• Large data sets, sometimes large numbers of

files, large i/o requirements
• Simple to complex workflows
• May involve transfers to other systems

•  e.g. NCI NF

CSIRO Advanced Scientific Computing

Processing constraints

•  Want best throughput
•  analysis is a big bottleneck in much of this science

•  Users write own scripts, or get them from group members
•  Start without any regard to the underlying file system

•  Not an issue with few files and small data
•  often all on-line

•  Problems come with large numbers of files, and/or large file
sizes

•  Education process then starts: probably more items in our
HPCbull on using the DMF HSM than on any other single
topic in the last 18 years!

•  Presentation
•  problems and some solutions to this kind of workflow
•  like passing a magnifying glass over the data

CSIRO Advanced Scientific Computing

Problem 1: throughput too low

• With a typical workflow, the pattern is:
Loop over target files !

Read input file!
process!
write output file!

End loop!

• On an HSM, this leads to low throughput
•  (measure with average number of CPUs used:

CPU time / elapsed time).

CSIRO Advanced Scientific Computing

Problem 2: poor usage of tape drives

• Each new file read leads to a tape mount
•  Poor use of drives
•  (1 minute mount and position, 1 sec to read a 100 Mbyte file,

another minute to rewind, dismount, replace in library).
• More wear on tapes and drives
•  Reduced throughput for that user and everyone else

CSIRO Advanced Scientific Computing

Solution 1: use dmget

•  Issue dmget command to explicitly recall the files
dmget files*!
Loop over target files!

Read input file; process; write output file!
End loop!

•  Allows DMF to efficiently recall multiple files from each tape
•  Wrinkles

•  Put the dmget command in the background, so that processing can
start as files are recalled

•  Insert another dmget command, so that processing aborts when a
file can’t be recalled.

dmget files* &!
Loop over target files!

dmget thisfile && read input file; process; write
output file!

End loop!

CSIRO Advanced Scientific Computing

Problem 3: users using dmget hog the
system

• The DMF request queue is mostly FIFO
• One user’s large request can block other

users for hours

CSIRO Advanced Scientific Computing

Solution 2: local dmget wrapper

• First version broke requests up into lumps,
based on the number of files and amount of
data

•  Efficiency within lumps
•  Serialised the lumps, to allow other users’ requests to be

serviced between lumps
•  Lost some efficiency in tape usage

CSIRO Advanced Scientific Computing

Problem 4: my files keep getting put away
before I can use them

• With a busy system, recalled files can get
freed before being used

• To preserve POSIX, a file recall does not count
as an access

• Need to update access time (since you are
about to read the file anyway)

CSIRO Advanced Scientific Computing

Solution 3: add a -a flag to dmget

• Solution 3: add a -a flag to dmget
•  (Used to advise using touch -a)

•  now a flag on dmget

• Updates access time
• Means that recalled files are no longer the

prime targets for the DMF freeing process

CSIRO Advanced Scientific Computing

Solution 4: recall files in smaller batches

dmget batch1* &!
Loop over batches!

If (not last batch) dmget batch_next* &!
Loop over files in this batch!
 dmget thisfile && read input file; process;
write output file!

End loop!
End loop!

CSIRO Advanced Scientific Computing

Problem 5: The file system filled, or I hit my
quota limit

• We impose quota limits on on-line space in
the /cs/datastore

• In 6 Tbyte filesystem, have default quota of
2 Tbyte, to stop one user dominating to the
detriment of others

CSIRO Advanced Scientific Computing

Solution 5: dmput recalled files after use

• Add a dmput -r onto the recalled files
• Release disc space for dual state files

dmget batch1* &!
Loop over batches!

If (not last batch) dmget batch_next* &!
Loop over files in this batch!
 dmget thisfile && read input file; process; write
output file; dmput -r thisfile!

End loop!
End loop!

•  Wrinkle
•  Don’t want users generating dmput request for new files, since we

want the system to batch these together.
•  Use local dmput wrapper supporting the -Q flag

•  only dual and partial state files are released.
•  dmput -r -Q thisfile

CSIRO Advanced Scientific Computing

Problem 6: The user whose files I am
recalling hit a quota limit

• Often the user doing the recalling does not
own the files

• Lots of recalls cause the owner to hit an
on-line space quota limit

• The SGI dmput does not allow users to
dmput other people’s files

• Had tried various ruses with .rhosts files to
allow limited cross-user access

• not satisfactory

CSIRO Advanced Scientific Computing

Solution 6: local dmput wrapper allows
cross-user dmputting

• Allows dmput on another user’s files,
provided the initiating user

• has read access to the file
• belongs to the group of the file.

CSIRO Advanced Scientific Computing

Problem 7: original dmget wrapper does not
allow recall efficiency

• When users call the original dmget
wrapper on their batches of files, and this
breaks these batches into lumps, then a lot
of the built-in DMF tape access
optimisation is lost

CSIRO Advanced Scientific Computing

Solution 7: New local dmget wrapper

•  Restores the DMF tape recall efficiency, by making
batches by tape volume

•  From man dmget:
•  (CSIRO only) CSIRO's wrapper around the SGI dmget program

is intended to prevent one user who requires a large amount of
data to be recalled from locking out a following user with more
modest demands.

•  It does this by determining which tapes the files reside on, and
processes them in batches tape by tape.

•  This minimises tape mounts and multiple passes over tapes,
which is kinder to the system and would result in faster
processing for the user.

•  Batches by one user may be interleaved with batches from a
different one.

http://http://hpsc.csiro.au/users/dmfug/Meeting_Oct2009/
Presentations/dmget_wrapper/

CSIRO Advanced Scientific Computing

Problem 8: dmget wrapper lumps don’t
match user batches

• Losing efficiency again
• User breaks work up into
convenient batches, e.g. a year at
a time

• This does not coincide with
optimum tape batches

CSIRO Advanced Scientific Computing

Solution 8: New local dmget wrapper option
--list

•  dmget --list files*
•  A different solution, if the order in which files are processed doesn't

matter, is to use a feature of the wrapper where it will perform a
dummy run, listing the files in the order in which it would have recalled
them, but without actually doing so. (From man dmget)
dmget --list file1 file2 file3 file4 > $TMPDIR/lof!
 dmget < $TMPDIR/lof &!
 for f in ` cat $TMPDIR/lof `; do!
 process_one_file $f!
 dmput -r $f!

 done!

•  Wrinkles
•  Local dmget has options:

•  --list, --defer, --recurse

CSIRO Advanced Scientific Computing

Problem 9: processing still waits for files

•  Can have imbalances, depending on the times to recall
files compared with the time to process files

•  Use parallel processing with background tasks, and
control the number of background tasks depending on
how much impact you want on other users, and the
extent of the imbalance.

CSIRO Advanced Scientific Computing

Solution 9: Use parallel

•  Put the commands to be executed into a file: e.g.
Loop over files (in dmget --list order)!

cat < EOF >> $TMPDIR/commands!
dmget -a thisfile && process thisfile ; dmput -r -Q
thisfile!

EOF!
End loop!

• Execute the commands in batches in parallel
parallel -j $max_bg < $TMPDIR/commands

•  $max_bg should be determined by various factors
•  number of requested CPUs in the batch job
•  the typical size of the files
•  the desired working set size (of on-line data) for the processing

CSIRO Advanced Scientific Computing

Problem 10: recalls issued for files that don’t
need to be processed

• When reruns are done, or when
transferring files, don’t want to re-issue
recalls for files already processed.

• For example, when copying files to a
remote location, there are often failures,
and the script is re-run, with wasted
recalls.

CSIRO Advanced Scientific Computing

Solution 10: Use rsync dry-run

• rsync --archive --verbose --dry-run \
 [other options] files destination:

(rsync –anv ...)

and capture the list of files that would need to
be transferred to do the real update.

CSIRO Advanced Scientific Computing

Example: transferring files to NCI NF. Part 1

Set up:
source_dir=~bel107/tests-cherax!
file_mask=job.progress.2011-01-1'*'!
dest_dir=test-transf!
dest_host=vayu.nci.org.au!
dest_user=rcb599!
transf_cmd='rsync --archive --rsh=ssh --partial \!
 --whole-file'!

CSIRO Advanced Scientific Computing

Example: transferring files to NCI NF. Part 2

cd $source_dir!
max_bg=5 # Max. number of background processes.
max_Mbyte=40000 # Max. amount of data to be recalling at any time.
Find a sample file size, and ensure that the amount of data being
recalled does not exceed $max_Mbyte, nor the number of files (and
hence processes) does not exceed the initial value of $max_bg.
file_sizeM=$(ls -al $file_mask | tail -n 1 | \!
 awk '{print int($5/1000000)}')!
if [$file_sizeM -le 0] ; then!
 file_sizeM=1!
fi!
((nfiles=$max_Mbyte/$file_sizeM))!
if [$nfiles -lt $max_bg] ; then!
 max_bg=$nfiles!
fi!
print \$max_bg is $max_bg!

CSIRO Advanced Scientific Computing

Example: transferring files to NCI NF. Part 3

Collect a list of only those files that need updating.
$transf_cmd -n --out-format='%n' $file_mask \!
 ${dest_user}@${dest_host}:${dest_dir} > \!
 $TMPDIR/file.list.1!

Set up the files in order by tape volume.
dmget --list < $TMPDIR/file.list.1 > $TMPDIR/file.list.2!

Initiate a dmget for the first batch.
head -n $max_bg $TMPDIR/file.list.2 | $dmget_cmd -a &!

/bin/rm $TMPDIR/jobqueue!
touch $TMPDIR/jobqueue!

CSIRO Advanced Scientific Computing

Example: transferring files to NCI NF. Part 4

Set up commands in a file, in optimum DMF order.
for ifil in $(cat $TMPDIR/file.list.2) ; do!
 print setup for $ifil!

 # Ensure the required file is present before proceeding.
 # Pin the dmget to the processing.
/bin/echo " \!
 echo processing $ifil ; $dmget -a $ifil ; \!
 ($transf_cmd -v $ifil \!
 ${dest_user}@${dest_host}:${dest_dir} &&\!
 $dmput -r -Q $ifil) 1> $TMPDIR/out.$ifil.1 2>&1 \!
" >> $TMPDIR/jobqueue!
done!

CSIRO Advanced Scientific Computing

Example: transferring files to NCI NF. Part 5

Add a dummy command to finish the pipe.
echo "echo last command executed, but earlier ones may \!
be still running" >> $TMPDIR/jobqueue!

Now set off the parallel execution.
parallel -j $max_bg < $TMPDIR/jobqueue!

CSIRO Advanced Scientific Computing

Example: transferring files to NCI NF. Part 6

Loop to ensure all is done (may not be needed).
 max_loops=10!
 i_loop=1!
 wait_time=10!
 while [$i_loop -lt $max_loops] ; do!
 njobs=$(ps --no-headers | tee $TMPDIR/ps.out | wc -l)!
 cat $TMPDIR/ps.out!
 if [$njobs -gt 5] ; then!
 echo $njobs processes in total - sleep for \!
 $wait_time seconds!
 sleep $wait_time ; ((wait_time = $wait_time * 2))!
 else!
 break!
 fi!
 ((i_loop = $i_loop + 1))!
 done!

CSIRO Advanced Scientific Computing

Example: transferring files to NCI NF. Part 7

wait!
Collect the output files.
cat $TMPDIR/out.*!
Optional - files should be removed by system if run as batch job.
However, for repeated interactive execution, do the remove.
/bin/rm $TMPDIR/out.*!

CSIRO Advanced Scientific Computing

Further notes and work

•  The above relies on passwordless ssh being set up
•  Uses hpn-ssh by default
•  Does not use gridftp (anti-social?), but does do parallel

recalls, parallel processing, parallel file transfers
•  Key techniques are:

•  to try to do the recalls in the best possible order
•  to tie the processing/transfer to the individual recall, and
•  to do as much as reasonable in parallel

•  Could check quota usage
•  have done in another version

•  Could use this script to transfer files from migrating file
system to scratch/work/flush area, and then work in there

•  Could set up utility
•  mcp like scp, but aware of source being on migrating file system

•  Hard to make a general facility
•  Big differences in techniques depending on the sizes and numbers of

files, and the relative amount of processing involved.

CSIRO Advanced Scientific Computing

Conclusion

• HSM
• key technology, but hard to build efficient

workflows
• Applies to ‘archive’ services as well

• need intelligence in the recall process
• User education!!!
• dmgets are the key
• locally-written version provides important
enhancements

• enhanced dmput as well
• The process of putting data into an HSM is
not so difficult!

Thank you

CSIRO IM&T
Robert Bell
Technical Services Manager, Advanced Scientific Computing

Phone: (03) 9545 2979
Email: Robert.Bell@csiro.au

 hpchelp@csiro.au
Web: http://intranet.csiro.au/intranet/imt/eResearch/asc.htm

 http://www.hpsc.csiro.au/contact
ASC Helpdesk: (03) 8601 3800

Contact Us
Phone: 1300 363 400 or +61 3 9545 2176

Email: Enquiries@csiro.au Web: www.csiro.au

