
Scratch Management and
Scalable Flushing

CSIRO IMT SCIENTIFIC COMPUTING

Robert C. Bell | CSIRO IMT Scientific Computing
7 June 2018

• Scratch (temporary) shared filesystems
•use and abuse, management
• Flushing – removal of “old’ files

• Old CSIRO algorithm
• New scalable algorithm

Scratch and flush | Robert C. Bell

Outline

2 |

• Scratch (temporary) shared filesystems
•Often the biggest and highest performing FS on HPC

systems
•Provides temporary storage for the duration of jobs

and sessions
•Needs to hold some data for longer to support

development, workflows, pre- and post-processing,
analysis, etc.

• Shared – need policies for management
•Many HPC sites have policies
•Many sites do not have workable implementations

Scratch and flush | Robert C. Bell

Temporary storage

3 |

• Our approach is to manage scratch areas to try to

maximize the use for the benefit of users, by allowing

them to

• gain access to large amounts of storage on demand (“campaign storage”)

• store files in the scratch space for longer than individual jobs and sessions

• reduce the copying to and from scratch

• have large quotas

• have automatic clean-up of old files

• Need to prevent scratch from filling

Scratch and flush | Robert C. Bell

Goals

4 |

Scratch and flush | Robert C. Bell

Space management - flushing
• Old CSIRO SC
• scripts and program to implement

policy
• triggered when usage reaches a

threshold (typically 95%)
• file audit, then sort, and delete oldest

until second threshold reached
(typically 90%), or 7 days (rare)

• uses mtime and atime – problem for
FSes that don’t do atime

• also removes empty directories
5 |

• Scratch areas shared between clusters and SGI UV 3000 (NFS)
• Old script slurped entire FS metadata into memory
• Scalability question – how quickly could the flushing respond

under pressure?
• Known problems of metatdata performance on distributed FSes

(NFS, Lustre)
• Servers (best place to run flushing script) did not have enough

memory
• Problem with access time (upon which flushing is partly based)

not being updated

• New policy – warning about inaccurate access times

Scratch and flush | Robert C. Bell

New implementation of flushing at CSIRO

6 |

• Inspiration was gained from the article “It Probably Works”,
McMullen, Tyler, CACM, vol 58, no 11, Nov 2015, pp 50-54.

• This article shows that we often do not need exact solutions, and
can provide approximate solutions at far lower “cost”.

• Don’t need to flush files in exact age order – a batch of old files
will do.

Scratch and flush | Robert C. Bell

New implementation of flushing at CSIRO

7 |

• Part A: scanning
• Eliminate the sort (to save processing time). Assign files from the

target filesystem as they are scanned to bins or buckets, based on
the youngest of access and modify time.
• Define a starting time as the time of commencement of service, or

(after the first flush) the age of the youngest file last flushed.
• Define 14 days (site policy) before present as our finishing time.
• Set up say 101 buckets – bucket 0 for files older than our starting

time (some may have escaped!), and a linear mapping of times to
buckets.
• As the scan proceeds, save just the path name into each bucket,

with one bucket for files and one for directories.

Scratch and flush | Robert C. Bell

New implementation of flushing at CSIRO

8 |

Oldest Newest
!!!!!|!!!!!!!!!!!!!!!!!!| cut-off
0 1 2 3 4 5 6 7 8 9 … 100
Keep these | Never need to create these …

0: <date0
1: date0–date1
2: date1–date2
3: date2–date3
4: date3–date4
…
100: date99–cut-off (e.g. 14 days)

Scratch and flush | Robert C. Bell

Scanning for candidates for flushing

9 |

• We are never going to flush 100% of the files, or even many more
than say 10%, so we need to save only perhaps 10 to 20 buckets:
each will represent about 1% of the time period in question, and
should hold around 1% of the files and 1% of the data
• The buckets can be saved on disc, thus obviating the need for

large memory. The time boundaries need to be recorded.
• Do the scan in advance, not just when a flush is needed:

overnight, or weekly or monthly, or only when a new scan is likely
to be needed.

Scratch and flush | Robert C. Bell

New implementation of flushing at CSIRO

10 |

• Part B: flushing
• When a flush is needed (we check every 5 minutes), the flush

process looks at the bucket containing the names of the oldest
files. It then reads this bucket, and for each file check that the file
still exists, and that its access and modify times are not later than
the bucket’s upper limit: if all is well, the file can be removed, and
recorded. If not, just skip the file.
• “It probably works”
• Having done one bucket, it can be moved aside (for the record),

and the file system checked against the desired threshold. If more
needs to be done, the bucket containing the names of the next
oldest files can be dealt with in the same manner, until enough
buckets have been dealt with to reach the threshold.

Scratch and flush | Robert C. Bell

New implementation of flushing at CSIRO

11 |

• Finally, if the threshold has not been reached, but all the buckets
have been processed, it is time for another scan. Avoid this by
always ensuring that there are plenty of buckets available.
• Flushing can start promptly when needed, since a list is ready to

go. There is the extra expense of a lookup for the file’s existence
and times to be added, but this is small compared with having to
scan the entire filesystem.
• There is no need to rescan while old buckets remain: once a

bucket is done for a time interval, no new entries are likely (files
should always go forward in time).
• Coding, testing and implementation done in 2016, after

announcements to users.

Scratch and flush | Robert C. Bell

New implementation of flushing at CSIRO

12 |

• Working!
• The scan time no longer matters!
• Flushing starts promptly when triggered – a few seconds

• With our old code, could take hours to respond.
• Latest timings

• Buckets were nowhere near the uniformity I hoped for:
• Saved 50 buckets instead

Scratch and flush | Robert C. Bell

Implementation

13 |

Filesystem Files
(M)

Scan time
(minutes)

Flush time
(minutes)

Removals
(M)

Average wait (s)

/flush1 30 96 32 1.98 2

/flush2 33 26 9 4.29 7

• Production hardening
• Responded to incident where someone accessed all the files, leaving nothing

to flush
• Now save 100 buckets spanning whole date range – not much extra work
• Time and date consistency
• Keep lists of flushed files
• Can provide lists per user of files at risk
• Open source – on bitbucket

Scratch and flush | Robert C. Bell

Recent work

14 |

Scratch and flush | Robert C. Bell

Implementation: flush dates and surviving file ages

15 |

Scratch and flush | Robert C. Bell

Implementation: age of surviving files

16 |

Scratch and flush | Robert C. Bell

Implementation: numbers of files

17 |

Scratch and flush | Robert C. Bell

Implementation: cumulative numbers of files

18 |

Scratch and flush | Robert C. Bell

Implementation: file sizes

19 |

Scratch and flush | Robert C. Bell

Implementation: cumulative file sizes

20 |

Scratch and flush | Robert C. Bell

Implementation

21 |

• NERSC interested in adopting this design – possible collaboration?
• Could save file sizes with pathnames, and sort buckets, so flush

would start with biggest files
• Could do scanning in parallel – separate scans for each metadata

server
• Could run flushing in parallel – separate flushing for each

metadata server, and a separate thread for each bucket.
• Extension coded to allow flushing of part of a filesystem

Scratch and flush | Robert C. Bell

Further work

22 |

• Policies for temporary storage
• necessary for users, systems staff and management and

productivity of users
• range of options: maximise the value of the resources
• need to communicate the policies (beforehand!)
• Implementing policies

• necessary, to avoid disasters and wastage
• tends to be over-looked
• disasters in waiting (users’ ignorance and complacency), masked

by reliable hardware (mostly)
• mustn’t add to the disasters!
• New scalable flushing methodology from CSIRO

Scratch and flush | Robert C. Bell

Conclusion

23 |

• With scratch under control:
Death of {/,/g/}data!

• CSIRO looking at abolition of /data area
• Hopelessly unmanageable storage!
• Users can use either scratch, or HSM-managed, or

Bowen Research Cloud
• Prototype utility to mirror scratch areas into persistent

storage, and have ability to re-create after flushing
• Another talk!

Scratch and flush | Robert C. Bell

Conclusion

24 |

•Jeroen van den Muyzenberg
•Steve McMahon
•Peter Edwards

Scratch and flush | Robert C. Bell

Acknowledgements

25 |

CSIRO IMT Scientific Computing
Robert C. Bell
CSIRO HPC National Partnerships
t +61 428 108 333
e Robert.Bell@csiro.au
w www.csiro.au

IMT SCIENTIFIC COMPUTING

Thank you

