

How green is my HSM?

David Honey SGI ANZ

Agenda

- Where does energy come from and go to?
- Mass storage device power use; disk, SSD, tape, optical
- Multi tier vs disk only
- HSM is green
- What SGI is doing to help customers reach sustainability
- Q&A

Where does electricity come from?

 43 billion kWh of electricity generated in NZ in 2006

Australian electricity sources are different

- In 2006 power stations produced 255 billion kilowatt hours (TWh) of electricity, 65% more than the 1990 level and growing at 3.3% pa.
- 18 TWh is used by power stations, leaving 237 TWh net production. 17 TWh is lost or used in transmission and 9-10 more in energy sector consumption, leaving 210 TWh for final consumption (or 187 TWh apart from aluminium exports)
- Much of the energy exported is used for generating electricity overseas; three times as much black coal is exported as is used

- 25% of electricity produced is lost in generation and transmission
- 90% energy sources are fossil fuels

Source: World Nuclear Association

Power: Energy used per unit of time

- Because the Data Centre is always on it consumes a lot of energy
- Conventional research uses energy too!

Where does energy go?

- Average of 12 Data Centres in NY&CA: Co-Location, Hosting, Government, Financial Institution, Telecom, Scientific Computing, Data Storage
- PUE = Total datacenter power draw / IT load power draw ~ 2

Source: Lawrence Berkeley National Laboratory, http://hightech.lbl.gov/benchmarking-dc.html

There's a Real Problem

- Energy consumption for US data centers and servers will nearly double by 2011... requiring an additional 10 power plants (EPA Study)
- Power consumption in data centers doubled from 2001 to 2005 (Lawrence Berkeley / Stanford study)
- Half the data centers will not have sufficient power for expansion by 2008 (Gartner survey '06)
- In the highest level of redundancy and reliability data centers, for every kilowatt used for processing, \$22,000 is spent on power and cooling infrastructure (Uptime Institute)
- Through 2009, energy costs will emerge as the second highest operating cost in 70% of data centers worldwide (Gartner survey '06)

Concerns No Longer Focused on Servers

- Servers currently account for about 60% of data center power... storage will soon take that place (Glass House '07)
- eWeek.com
 - Average number of storage terabytes maintained by Fortune 1000 organizations in 2004: 138
 - Average number of storage terabytes maintained by
 Fortune 1000 organizations in October 2006: 600

Disk drive power dissipation

- SATA drives use 8 10W
- SCSI drive use 12 20W
- SAS drives use ~1W more than SCSI
- FC drives use ~2W more than SCSI

Disk drive startup power consumption

- SATA similar to SCSI
- Drives use ~1.5x (scsi) 2x (SATA) peak power to spin up

Energy required for 20TB of disk

Seagate Savvio 15K.1	<u>Capacity</u> (GB) 73	<u>Speed</u> (rpm) 15000	<u>Type</u> SAS	Power (Watts) 8.1	<u>Drives</u> 274	Energy p.a. (KWh) 19,357	<u>Joules</u> (GJ) 70
Seagate Cheetah 15K.4	146	15000	SCSI	19.1	137	22,936	83
Hitachi 10K300	300	10000	SCSI	15.8	67	9,257	33
Seagate Cheetah NS	400	10000	SAS	11.1	50	4,883	18
Seagate Barracuda ES	750	7200	SATA	12.5	27	2,927	11
Hitachi 7K1000	1000	7200	SATA	12.9	20	2,269	8
WD GP WD10EACS	1000	5400	SATA	6.8	20	1,199	4.3
Seagate Barracuda PR	1500	7200	SATA	10.9	14	1,274	4.5

- Power based on 80% seeks 20% idle
- 1TB drives use ~10x less power per TB than 146GB SCSI drives
- 1TB drives use ~2x less power per TB than 400GB SCSI drives
- SCSI/SAS/FC has 2x IOPs and less latency
- New drives from Seagate and Western Digital use 50% less power

Tape

SAIT / LTO4

800GB 45 / 120MB/s native 19sec load time 57sec file access time 30W (active) 5W (idle)

TS1130

1000GB 160MB/s native 13sec load time 49sec data access 46W (active) 17W (idle)

T10000B

Capacity cart Sport cart
1000GB 75GB
120MB/s native
16sec load time
48sec data access 12sec
63W (N/A)

- No power used to retain data
- Very high data transfer rates per device sequential access
- Tape Libraries 10TB 8PB+
- 30 year media life

Optical Storage

Holographic (3D)

300GB 20MB/s data transfer 5 sec load time 50 year archive life Blue laser 10,000,000 reads WORM 80W

Ultra Dense Optical (UDO)

60GB (UDO2)

12MB/s data transfer

6.5sec media access time

50 year archive life

Blue laser

WORM

310W (19TB jbox)

20W (drive)

Blu-Ray / DVD

BD-R, BD-RE, DVD-R, DVD-RW

- Like tape, optical media requires no electricity to store data
- Data transfer rates are low compared to tape and disk
- Random access once media loaded
- Largest jukebox capacity 30TB

Solid State Disk

- SSDs use 5W idle and 8W during data transfers
- Excellent performance
- Very expensive for significant capacity

Case Studies, tiered storage

Small

50TB

Medium

250TB

Large

1PB

50TB Storage Solution Power Comparison

Model	Watts	Type	Drives	Capacity (TB)
SGI IS220 + SL T50	510 265 775	SAS LTO4	30 2	10 40 50
Disk only		> 2.3x		
SGI IS4000	1,793	SATA	64	51

- 8+2 RAID6
- 400GB FC drives for HSM
- 1TB SATA drives disk only

VS

250TB Storage Solution Power Comparison

1PB Storage Solution Power Comparison

Model	Watts	Type	Drives	Capacity (TB)
SGI IS4600 SL T950	4,092 966 5,058	FC LTO4	128 12	41 <u>1,154</u> 1,195
Disk only		7x SATA	1,200	960

- 8+2 RAID6
- 400GB FC drives for HSM
- 1TB SATA drives disk only

Results Summary

	Multi tier	Disk only	Greener
Small	17W/TB	35W/TB	2.3x
Medium	7.6W/TB	37.5W/TB	4.6x
Large	4.4W/TB	37W/TB	7x

- In all cases multi tier RAIDs used SAS or FC disks to handle tape and network IO
- A fundamental difference in service is the higher latency involved in retrieving data from tape

HSM should be first choice for long term storage

Disk and tape have a place in the data center

- With HSM, a relatively small volume of high performance disk satisfy user requests with good bandwidth and IOPS characteristics
- The bulk of data resides on tape when it's not active
- HSM provides the 'smarts' to move data to the appropriate storage medium in response to usage
- It is easy being green WRT storage and capital investment is lower than a 'disk only' solution

Without HSM, Backups Consume More Energy

SGI Contribution to Energy Initiatives

tc99.ashraetcs.org/

www.thegreengrid.org/

www.climatesaverscomputing.org/

www.80plus.org

www.epa.gov

www.energystar.gov

www.eere.energy.gov/femp

www.spec.org/power ssj2008/

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

ASHRAE Technical Committee 9.9

Building Water-Cooled Racks

(4) Individual Coils

Target Heat Rejection 95% water / 05% air

Chilled-Water Supply 45°F to 60°F (7.2°C to 15.6°C) 14.4 gpm (3.3 m³/hr) Max.

Condensate Drain Pan

Branch Feed to Individual Coil

3/4" (1.91 cm)

Swivel Coupling to Supply Hose

Free Cooling Solution

- Free Cooling technology saves on energy compared to the traditional refrigerated equipment, especially during autumn, winter and spring
 - Achieved by utilizing a low energy, dry air cooler and Free Cooling technology
 - Can partially or fully reduce the chiller depending on ambient air temperature.
 - Most effective when utilizing rear door and in-row water cooled solutions
- Return on investment,
 - payback in as little as six months
 - eligible for government grants (?)
 - Fully compliant with the latest EU directives for data centres.
- SGI PS development for easy installation on any chilled water systems. Existing installations can benefit from significant energy savings by retro-fitting.

Rack Centric Power Options

- AC
 - Plugs, cords, PDU's, ATS's
 - Rack-level
- Rectified DC
 - Rack level
- Direct DC

DC Card

Server Cooling Design - Dell 1950

Rackable Eco-Logical™ Chassis Design

4 fans x 4.5w = 18 Watts

Cooling Shroud

Smart Component Placement

Building Award Winning Power Supplies

- SGI awarded 80plus silver and bronze certification for Altix systems shipping since January 2007.
- 2837W Power Supply exceeds ClimateSaver specifications for 1 and 2U servers.

Designing More Efficient HPC Systems

'Kelvin' liquid cooling system

- SGI 'Molecule' concept computer
- 10x core density, ½ the power usage
- Commodity components (mobile device processor)
- 20x memory bw of a single rack x86 cluster
- Intel Atom N330 based; 8W TDP compare 120 W for XEON

Delivering Green Consulting Services

- Data Center Assessment
- Dense Systems Assessment
- Energy Efficiency Assessment
- Power Distribution Assessment
- Storage Assessment

Projected Electricity Use, All Scenarios 2007 to 2011

The problem with disk

- Drive capacity growing at diminishing rate ~30%
- Enterprise capacity increasing ~ constant 50%
- Drive capacity growth exceeds IOPs growth
- Forces tending to increase drive counts (and power consumption)

Power dissipation per unit area

Year of Product Announcement

Source: Uptime Institute

DMF Saving the planet

- Automated tape libraries use a fraction of the power of RAID storage
- SATA disk is greener than SCIS/SAS/FC but isn't appropriate for all workloads
- It is better for the planet for users to manage metadata better (MediaFlux) and wait a little longer for data
- "It's cheaper to push everything off to tape than have someone look at it"
- Centralised storage services improve data protection and data access to wider audiences
- Every Watt saved reduces green house gas emissions

DMF integration with Mediaflux

designed. engineered. results.